MEI STRUCTURED MATHEMATICS

INTRODUCTION TO ADVANCED MATHEMATICS, C1

Practice Paper C1-D

Additional materials: Answer booklet/paper
Graph paper
MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used..
- Answer all the questions.
- You not permitted to use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You re advised that you may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is $\mathbf{7 2}$.

Section A (36 marks)

1 (i) Statement P is $a+b=4$.
Statement Q is $\quad a=1$ and $b=3$.
Which one of the following is correct?

$$
\begin{equation*}
\mathrm{P} \Rightarrow \mathrm{Q}, \quad \mathrm{P} \Leftrightarrow \mathrm{Q}, \quad \mathrm{P} \Leftarrow \mathrm{Q} \tag{1}
\end{equation*}
$$

(ii) Statement R is $\quad x=2$.

Statement S is $x^{2}=4$.
Which one of the following is correct?

$$
\begin{equation*}
\mathrm{R} \Rightarrow \mathrm{~S}, \quad \mathrm{R} \Leftrightarrow \mathrm{~S}, \quad \mathrm{R} \Leftarrow \mathrm{~S} \tag{1}
\end{equation*}
$$

2 Find the equation of the straight line which is parallel to the line $y=3 x+5$ and which goes through the point $(2,12)$.

3 Find the term which has the highest coefficient in the expansion of $(1+x)^{8}$.

4 The surface area of the surface of a cylinder is given by the formula

$$
A=2 \pi r(r+h)
$$

Rearrange this formula so that h is the subject.

5 Solve the following equations.
(a) $\quad 2^{x}=\frac{1}{8}$.
(b) $x^{-\frac{1}{2}}=\frac{1}{4}$

6 Find the positive integer values of x for which

$$
\begin{equation*}
\frac{1}{2}(26-2 x) \geq 2(3+x) \tag{3}
\end{equation*}
$$

7 The remainder when $x^{3}-2 x+4$ is divided by $(x-2)$ is twice the remainder when $x^{2}+x+k$ is divided by $(x+1)$.
Find the value of k.

8 Find the values of a and b for which $\frac{4}{(2 \sqrt{3}-1)}=a+b \sqrt{3}$.

9 Find the coordinates of the points where the curve $y=x^{2}-2 x-8$ meets the line $y=x+2$. [4]

10 The diagram shows the graph of $y=\mathrm{f}(x)$.

A is the minimum point of the curve at $(3,-4)$ and B is the point $(5,0)$.
On separate diagrams on graph paper, draw the graphs of the following. In each case give the coordinates of the images of the points A and B.
(i) $y=\mathrm{f}(x)+2$,
(ii) $y=\mathrm{f}(x+2)$.

Section B (36 marks)

11 Fig. 11 shows the graph of $y=a x^{2}+b x+c$.

Fig. 11
(i) Explain why a must be negative.
(ii) State two factors of $y=a x^{2}+b x+c$.
(iii) Hence, or otherwise, find the values of a, b and c.

Another function is given by $y=x^{2}-4 x+10$.
(iv) Write this in completed square form.
(v) Explain why the graphs of these two functions never meet.

12 The function $\mathrm{f}(x)$ is given by $\mathrm{f}(x)=x^{3}+6 x^{2}+5 x-12$.
(i) Show that $(x+3)$ is a factor of $\mathrm{f}(x)$.
(ii) Find the other factors of $\mathrm{f}(x)$.
(iii) State the coordinates where the graph of $y=\mathrm{f}(x)$ cuts the x axis.

Hence sketch the graph of $y=\mathrm{f}(x)$.
(iv) On the same graph sketch also $y=x(x-1)(x-2)$ Label the two points of intersection of the two curves A and B.
(v) By equating the two curves, show that the x coordinates of A and B satisfy the equation $3 x^{2}+x-4=0$.
Solve this equation to find the x-coordinates of A and B.

13 In Fig.13, XP and XQ are the perpendicular bisectors of AC and BC respectively.

Fig. 13
(i) Find the coordinates of X .
(ii) Hence show that $\mathrm{AX}=\mathrm{BX}=\mathrm{CX}$.
(iii) The circumcircle of a triangle is the circle which passes through the vertices of the triangle.
Write down the equation of the circumcircle of the triangle $A B C$.
(iv) Find the coordinates of the points where the circle cuts the x axis.

